« Syndromes myasthéniques : Toxiques et troubles électrolytiques » : différence entre les versions

Aller à : navigation, rechercher
(Page créée avec « = Troubles électrolytiques : calcium et magnésium = Les hypoMg et hypoCa se caractérisent par une hyper-excitabilité de la jonction neuro-musculaire alors que les hyperM... »)
 
m (Remplacement de texte : « {{Modèle:Pub}} » par «  »)
 
(14 versions intermédiaires par le même utilisateur non affichées)
Ligne 1 : Ligne 1 :
= Troubles électrolytiques : calcium et magnésium =
Pour rappel, schéma de la jonction neuro-musculaire :


Les hypoMg et hypoCa se caractérisent par une hyper-excitabilité de la jonction neuro-musculaire alors que les hyperMg et hyperCa se caractérise par une dépression neuro-musculaire. L'intoxication au Mg se recontre surtout chez l'insuffisant rénal terminal. Les effets de ces troubles électrolytiques sont multiples... les modes d'action prépondérant étant :
[[File:JNM.png|center|Jonction neuro-musculaire - physiologie]]


*Calcium :
== Troubles électrolytiques : calcium et magnésium ==
**Cardiomyocytes : module la durée de repolarisation via des canaux Ca voltage dépendant
<p style="text-align: left">Les hypoMg et hypoCa se caractérisent par une hyper-excitabilité de la jonction neuro-musculaire alors que les hyperMg et hyperCa se caractérise par une dépression neuro-musculaire. L'intoxication au Mg se recontre surtout chez l'insuffisant rénal terminal. Les effets de ces troubles électrolytiques sont multiples... les modes d'action prépondérant étant&nbsp;:</p>
**Muscles lisses : module la contractilité via la concentration intra-cellulaire
*Calcium&nbsp;:
**Système nerveux et muscle squelettique : module le seuil d'ouverture de canaux Na voltage dépendant
**Cardiomyocytes&nbsp;: module la durée de repolarisation via des canaux Ca voltage dépendant
*Magnésium :
**Muscles lisses&nbsp;: module la contractilité via la concentration intra-cellulaire
**Cardiomyocytes, muscles lisses et jonction neuro-musculaire : inhibiteur compétitif du Ca
**Système nerveux et muscle squelettique&nbsp;: module le seuil d'ouverture de canaux Na voltage dépendant
**Système nerveux central : antagoniste des récepteurs NMDA,...
*Magnésium&nbsp;:
**Cardiomyocytes, muscles lisses et jonction neuro-musculaire&nbsp;: inhibiteur compétitif du Ca
**Système nerveux central&nbsp;: antagoniste des récepteurs NMDA,...


= Autres toxiques =
== Autres toxiques ==


*Venins de serpents (cobras, mambas, serpents de mer,... en Belgique : vipère commune)&nbsp;: neurotoxines se fixant sur les R(Acch) → syndromes myasthéniques aigus parfois très sévères.
*Venins de serpents (cobras, mambas, serpents de mer,... en Belgique&nbsp;: vipère commune)&nbsp;: neurotoxines se fixant sur les R(Acch) → syndromes myasthéniques aigus parfois très sévères.
*Arthropodes (Amérique, Australie) et aux organo-phosphorés
*Arthropodes (Amérique, Australie) et aux organo-phosphorés
*Iatrogènes : D-pénicillamine,...
*Iatrogènes&nbsp;: D-pénicillamine,...
*Oranophosphorés et carbamates (pesticides et gaz de combat)
*Oranophosphorés et carbamates (pesticides et gaz de combat)
*Curares
*Curares
*Toxine botulinique (cf [[Syndromes myasthéniques : Botulisme]])
== Auteur(s) ==
Dr [[Utilisateur:Shanan Khairi|Shanan Khairi]], MD
== Bibliographie ==
Allan, Pathogenesis of myasthenia, up-to-date, 2012
Baggi et al., Complete stable remission and autoantibody specificity in myasthenia gravis, Neurology, 2013 Jan 8; 80(2):188-195
Berrih-Aknin et al., Myasthenia gravies and autoantibodies: Pathophysiology of the different subtypes, Rev Med Interne, 2013 Oct 21
Bershad et al., Myasthenia gravis crisis, South Med J, 2008 Jan, 101(1):63-9
Bird, Clinical manifestations of myasthenia gravis, up-to-date, 2013
Bird, Diagnostic of myasthenia, up-to-date, 2013
Bird, Differential Diagnosis of myasthenia gravis, up-to-date, 2012
Bird, Myasthenic crisis, up-to-date, 2012
Bird, Treatment of myasthenia, up-to-date, 2013
Burden et al., The role of MuSK in synapse formationand neuromuscular disease, Cold Spring Harb Perspect Biol, 2013 May 1;5(5)
Bradley et al., Neurology in clinical practice, 5e éd., Butterworth-Heinemann, 2007
Callondro et al., The difficulty in confirming clinical diagnosis of myasthenia gravis in a seronegative patient&nbsp;: a possible neurophysiological approach, Neuromuscular Disorders, 2009, 19(12):825-827
Carr et al, A systématic review of population based epidemiological studies in myasthenia gravis, BMC Neurol, 2010, 10:46
Choi Decroos et al., Do acetylcholine receptor and striated muscle antibodies predict the presence of thymoma in patients with myasthenia gravis, Muscle Nerve, 2014 Jan;49(1):30-4
Collongues et al, Rituximab in refractory and non-refractory myasthenia&nbsp;: a retrospective multicenter study, Muscle Nerve, 2012, 46:687-91
Deymeer et al., Clinical comparison of anti-MuSK vs anti-AChR-positive and seronegative myasthenia gravis, Neurology, 2007 Feb 20;68(8):609-11
Echaniz-Laguna, Myasthenia gravis with anti-MuSK antibodies, FMC, vol. 3, Issue 1, Feb 2012, pp. 26-31, Elsevier
El-Koussy et al., Susceptibility-weighted MR imaging for diagnosis of capillary telangiectasia of the brain, Am J Neuroradiol, 2012 Apr, 33:715-20
Evoll et al., Diagnosis and therapy of myasthenia gravis with antibodies to muscle-specific kinase, Autoimmun Rev, 2013 Jul, 12(9), 931-5
Gary et al., Practice parameter&nbsp;: Thymectomy for autoimmune myasthenia gravis (an evidence-based review), Neurology, 2000, vol. 55 n°1, 7-15
Gaumond, Troubles oculaires de la myasthenie, EMC-Neurologie
Gold et al., Current and future standards in treatment of myasthenia gravis, Neurotherapeutics, 2008 Oct, 5(4):535-41
Goulon-Goeau et al., Myasthénie et syndromes myasthéniques, EMC-Neurologie, 17-172-B-10, 2002, Elsevier
Guptil et al., Anti-MuSK antibody myasthenia gravis&nbsp;: clinical findings and response to treatment in two large cohorts, Muscle Nerve, 2011 Jul, 44(1): 36-40
Hellmann et al., Myasthenia gravis in the eldery, J Neurol Sci, 2013 Feb, 325(1-2):1-5
Howard et al., Clinical correlations of antibodies that bind, block or modulate human acetylcholine receptors in myasthenia gravis, Ann NY Acas Sci, 1987
Howard et al., Myasthenia Gravis. A manual for the health care provider, Myasthenia Gravis Foundation of America, 2008
Huddle et al., Clinically Agressive Diffuse Capillary Telangiectasia of the Brain Stem&nbsp;: A Clinical Radiologic-Pathologic Case Study, AJNR, Oct 1999, 20:1674-1677
Jayam Trouth et al., Myasthenia Gravis: A review, Autoimmun Dis, 2012, ID 874680
Keung et al., Long term benefit of rituximab in MuSK autoantibody myasthenia gravis, J Neurol Neurosurg Psychiatry, 2013 Dec, 84(12):1407-9
Leite et al., Diagnostic use of antibodies in myasthenia gravis, Autoimmunity, 2010
Lindstrom et al., Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates and diagnostic value, Neurology, 1976
Mandawat et al., Comparative analysis of therapeutic option used for myasthenia gravis, Ann Neurol, 2010 Dec, 68(6):797-805
Mercelis et al., Diagnostic utility of stimulated single-fiber electromyography of the orbicularis oculi muscle in patients with suspected ocular myasthenia, Muscle Nerve, 2011 Feb, 43(2):168-70
Mittal et al., Ocular myasthenia gravis in an academic neuro-ophtalmology clinic&nbsp;: clinical features and therapeutic response, J Clin Neuromuscular Dis, 2011 Sep;13(1):46-52
Nikolic et al., The predictive value of the prensence of different antibodies and thymus pathology to the clinical outcome in patient with generalized myasthenia gravis, Clin Neurol Neurosurg, 3013 Apr;115(4):432-7
Oh et al., Electrophysiological diagnostic criteria of Lambert Eaton myasthenic syndrome, Muscle Nerve, 2005 Oct; 32(4):515-20
Padua et al., Reliability of SFEMG in diagnosing myasthenia gravis&nbsp;: sensitivity and specificity calculated on 100 prospective cases, Clin Neurophysiol, 2013 Nov 15.
Pelak et al., Ocular myasthenia, up-to-date, 2013
Perrotin et al., Tumeurs du thymus, EMC Pneumologie, 6-047-D-10, Elsevier, 2005
Poulas et al., Anti-MuSK and anti-AChR positive myasthenia gravis induced by d-penicillamine, J Neuroimmunol, 2012 Sept, 250(1-2):94-8
Preston et al., Electromyography and neuromuscular disorders. Clinical-electrophysiologic correlations, 2e éd., Elsevier, 2005
Pruit et al., A look into Myasthenia Gravis, InTech, 2012
Sakaguchi et al., Myasthenic crisis patients who require intensive care unit management, Muscle Nerve, 2012 Sep, 46(3):440-2
Sato et al., Effect of sera from seronegative myasthenia gravis patients on neuromuscular junctions, Neurol Sci, 2013 Oct; 34(10):1735-44
Skeie et al., Guidelines for treatment of auto-immune neuromuscular transmission disorders, European Journal of Neurology, 2010 Apr, vol 17(7): 893-902
Sleb et al., Myasthenia Gravis: An Update for the Clinician, Clin Exp Immunol, 2013 Oct
Taraldsen Heldan, Seropositive Myasthenia Gravis. A Nationwide Epidemiological Study, Neurology, 2009
Toth et al., Aceetylcholine receptor antibodies in myasthenia gravis are associated with greater risk of diabetes and thyroïd disease, Acta Neurol Scand, 2006 Aug; 114(2):124-32
Trakas et al., Development of a highly sensitive diagnostic assay for muscle specific tyrosine kinase (MuSK) autoantibodies in myasthenia gravis, J Neuroimmunol, 2011 Dec 15, 240-241:79-86
Vincent et al., Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis&nbsp;: results in 153 validated cases and 2967 diagnostic essays, J Neurolo Neurosurg Psych, 1985
Witoonpanich et al., Electrophysiological and immunological study in myasthenia gravis&nbsp;: diagnostic sensitivity and correlation,&nbsp; Clin Neurophysiol, 2011 Sep, 122 (9):1873-7
Zambelis et al., Repetitive nerve stimulation of facial and hypothenar muscles: relative sensitivity in different myasthenia gravis subgroups, Eur Neurol, 2011, 65(4):203-7
== Auteur(s) ==
Dr [[Utilisateur:Shanan Khairi|Shanan Khairi]], MD
{{Modèle:Catégorie|Neurologie}}{{Modèle:Catégorie|Pathologie neuromusculaire}}{{Modèle:Catégorie|Articles incomplets}}{{Modèle:Catégorie|Médecine interne}}

Version actuelle datée du 5 novembre 2022 à 09:01

Pour rappel, schéma de la jonction neuro-musculaire :

Jonction neuro-musculaire - physiologie

Troubles électrolytiques : calcium et magnésium

Les hypoMg et hypoCa se caractérisent par une hyper-excitabilité de la jonction neuro-musculaire alors que les hyperMg et hyperCa se caractérise par une dépression neuro-musculaire. L'intoxication au Mg se recontre surtout chez l'insuffisant rénal terminal. Les effets de ces troubles électrolytiques sont multiples... les modes d'action prépondérant étant :

  • Calcium :
    • Cardiomyocytes : module la durée de repolarisation via des canaux Ca voltage dépendant
    • Muscles lisses : module la contractilité via la concentration intra-cellulaire
    • Système nerveux et muscle squelettique : module le seuil d'ouverture de canaux Na voltage dépendant
  • Magnésium :
    • Cardiomyocytes, muscles lisses et jonction neuro-musculaire : inhibiteur compétitif du Ca
    • Système nerveux central : antagoniste des récepteurs NMDA,...

Autres toxiques

  • Venins de serpents (cobras, mambas, serpents de mer,... en Belgique : vipère commune) : neurotoxines se fixant sur les R(Acch) → syndromes myasthéniques aigus parfois très sévères.
  • Arthropodes (Amérique, Australie) et aux organo-phosphorés
  • Iatrogènes : D-pénicillamine,...
  • Oranophosphorés et carbamates (pesticides et gaz de combat)
  • Curares
  • Toxine botulinique (cf Syndromes myasthéniques : Botulisme)

Auteur(s)

Dr Shanan Khairi, MD

Bibliographie

Allan, Pathogenesis of myasthenia, up-to-date, 2012

Baggi et al., Complete stable remission and autoantibody specificity in myasthenia gravis, Neurology, 2013 Jan 8; 80(2):188-195

Berrih-Aknin et al., Myasthenia gravies and autoantibodies: Pathophysiology of the different subtypes, Rev Med Interne, 2013 Oct 21

Bershad et al., Myasthenia gravis crisis, South Med J, 2008 Jan, 101(1):63-9

Bird, Clinical manifestations of myasthenia gravis, up-to-date, 2013

Bird, Diagnostic of myasthenia, up-to-date, 2013

Bird, Differential Diagnosis of myasthenia gravis, up-to-date, 2012

Bird, Myasthenic crisis, up-to-date, 2012

Bird, Treatment of myasthenia, up-to-date, 2013

Burden et al., The role of MuSK in synapse formationand neuromuscular disease, Cold Spring Harb Perspect Biol, 2013 May 1;5(5)

Bradley et al., Neurology in clinical practice, 5e éd., Butterworth-Heinemann, 2007

Callondro et al., The difficulty in confirming clinical diagnosis of myasthenia gravis in a seronegative patient : a possible neurophysiological approach, Neuromuscular Disorders, 2009, 19(12):825-827

Carr et al, A systématic review of population based epidemiological studies in myasthenia gravis, BMC Neurol, 2010, 10:46

Choi Decroos et al., Do acetylcholine receptor and striated muscle antibodies predict the presence of thymoma in patients with myasthenia gravis, Muscle Nerve, 2014 Jan;49(1):30-4

Collongues et al, Rituximab in refractory and non-refractory myasthenia : a retrospective multicenter study, Muscle Nerve, 2012, 46:687-91

Deymeer et al., Clinical comparison of anti-MuSK vs anti-AChR-positive and seronegative myasthenia gravis, Neurology, 2007 Feb 20;68(8):609-11

Echaniz-Laguna, Myasthenia gravis with anti-MuSK antibodies, FMC, vol. 3, Issue 1, Feb 2012, pp. 26-31, Elsevier

El-Koussy et al., Susceptibility-weighted MR imaging for diagnosis of capillary telangiectasia of the brain, Am J Neuroradiol, 2012 Apr, 33:715-20

Evoll et al., Diagnosis and therapy of myasthenia gravis with antibodies to muscle-specific kinase, Autoimmun Rev, 2013 Jul, 12(9), 931-5

Gary et al., Practice parameter : Thymectomy for autoimmune myasthenia gravis (an evidence-based review), Neurology, 2000, vol. 55 n°1, 7-15

Gaumond, Troubles oculaires de la myasthenie, EMC-Neurologie

Gold et al., Current and future standards in treatment of myasthenia gravis, Neurotherapeutics, 2008 Oct, 5(4):535-41

Goulon-Goeau et al., Myasthénie et syndromes myasthéniques, EMC-Neurologie, 17-172-B-10, 2002, Elsevier

Guptil et al., Anti-MuSK antibody myasthenia gravis : clinical findings and response to treatment in two large cohorts, Muscle Nerve, 2011 Jul, 44(1): 36-40

Hellmann et al., Myasthenia gravis in the eldery, J Neurol Sci, 2013 Feb, 325(1-2):1-5

Howard et al., Clinical correlations of antibodies that bind, block or modulate human acetylcholine receptors in myasthenia gravis, Ann NY Acas Sci, 1987

Howard et al., Myasthenia Gravis. A manual for the health care provider, Myasthenia Gravis Foundation of America, 2008

Huddle et al., Clinically Agressive Diffuse Capillary Telangiectasia of the Brain Stem : A Clinical Radiologic-Pathologic Case Study, AJNR, Oct 1999, 20:1674-1677

Jayam Trouth et al., Myasthenia Gravis: A review, Autoimmun Dis, 2012, ID 874680

Keung et al., Long term benefit of rituximab in MuSK autoantibody myasthenia gravis, J Neurol Neurosurg Psychiatry, 2013 Dec, 84(12):1407-9

Leite et al., Diagnostic use of antibodies in myasthenia gravis, Autoimmunity, 2010

Lindstrom et al., Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates and diagnostic value, Neurology, 1976

Mandawat et al., Comparative analysis of therapeutic option used for myasthenia gravis, Ann Neurol, 2010 Dec, 68(6):797-805

Mercelis et al., Diagnostic utility of stimulated single-fiber electromyography of the orbicularis oculi muscle in patients with suspected ocular myasthenia, Muscle Nerve, 2011 Feb, 43(2):168-70

Mittal et al., Ocular myasthenia gravis in an academic neuro-ophtalmology clinic : clinical features and therapeutic response, J Clin Neuromuscular Dis, 2011 Sep;13(1):46-52

Nikolic et al., The predictive value of the prensence of different antibodies and thymus pathology to the clinical outcome in patient with generalized myasthenia gravis, Clin Neurol Neurosurg, 3013 Apr;115(4):432-7

Oh et al., Electrophysiological diagnostic criteria of Lambert Eaton myasthenic syndrome, Muscle Nerve, 2005 Oct; 32(4):515-20

Padua et al., Reliability of SFEMG in diagnosing myasthenia gravis : sensitivity and specificity calculated on 100 prospective cases, Clin Neurophysiol, 2013 Nov 15.

Pelak et al., Ocular myasthenia, up-to-date, 2013

Perrotin et al., Tumeurs du thymus, EMC Pneumologie, 6-047-D-10, Elsevier, 2005

Poulas et al., Anti-MuSK and anti-AChR positive myasthenia gravis induced by d-penicillamine, J Neuroimmunol, 2012 Sept, 250(1-2):94-8

Preston et al., Electromyography and neuromuscular disorders. Clinical-electrophysiologic correlations, 2e éd., Elsevier, 2005

Pruit et al., A look into Myasthenia Gravis, InTech, 2012

Sakaguchi et al., Myasthenic crisis patients who require intensive care unit management, Muscle Nerve, 2012 Sep, 46(3):440-2

Sato et al., Effect of sera from seronegative myasthenia gravis patients on neuromuscular junctions, Neurol Sci, 2013 Oct; 34(10):1735-44

Skeie et al., Guidelines for treatment of auto-immune neuromuscular transmission disorders, European Journal of Neurology, 2010 Apr, vol 17(7): 893-902

Sleb et al., Myasthenia Gravis: An Update for the Clinician, Clin Exp Immunol, 2013 Oct

Taraldsen Heldan, Seropositive Myasthenia Gravis. A Nationwide Epidemiological Study, Neurology, 2009

Toth et al., Aceetylcholine receptor antibodies in myasthenia gravis are associated with greater risk of diabetes and thyroïd disease, Acta Neurol Scand, 2006 Aug; 114(2):124-32

Trakas et al., Development of a highly sensitive diagnostic assay for muscle specific tyrosine kinase (MuSK) autoantibodies in myasthenia gravis, J Neuroimmunol, 2011 Dec 15, 240-241:79-86

Vincent et al., Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis : results in 153 validated cases and 2967 diagnostic essays, J Neurolo Neurosurg Psych, 1985

Witoonpanich et al., Electrophysiological and immunological study in myasthenia gravis : diagnostic sensitivity and correlation,  Clin Neurophysiol, 2011 Sep, 122 (9):1873-7

Zambelis et al., Repetitive nerve stimulation of facial and hypothenar muscles: relative sensitivity in different myasthenia gravis subgroups, Eur Neurol, 2011, 65(4):203-7

Auteur(s)

Dr Shanan Khairi, MD